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Abstract

This paper discusses the source term treatment in the numerical solution of elliptic partial differential

equations for an interior grid generation problem in generalized curvilinear coordinates. The geometry

considered is that of a planar cross-section of a generic spiral-bevel gear tooth typical of a pinion in the
OH-58 helicopter transmission. The source terms used are appropriate for an interior grid domain where all

the boundaries are prescribed via a combination of Dirichlet and Neumann boundary conditions.

New constraints based on the Green's Theorem are derived which uniquely determine the coefficients in

the source terms j . These constraints are designed for boundary clustered grids where gradients in physical

quantities need to be resolved adequately. However, it is seen that the present formulation works satisfactorily

for mild clustering also. Thus, a fully automated elliptic grid generation technique is made possible where

there is no need for a parametric study of these parameters since the new relations fix these free parameters

uniquely.
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1 Introduction

There has been a large amount of effort devoted to developing and enhancing the grid generation capability

1,2,3,4 through the solution of elliptic partial differential equations (pdes). The elliptic pdes used in the

grid generation problems near boundaries are similar to the equations used in nuclear physics, diffusion-

reaction problems, vortex problems, electric space charge problems, steady state heat transfer (conduction

and convection) through long thin fins, etc. In the grid generation problems, these pdes contain appropriate

source terms that control the distribution of grid points especially near the boundaries. In the literature,
the elliptic pdes used for grid generation are erroneously referred to as Poisson equations which contain

source terms that are functions of only the independent variables, whereas, in the pdes for grid generation,
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these inhomogeneous terms also contain terms proportional to the dependent variables. Actually, in grid

generation problems, close to a curvilinear boundary, the governing equations reduce to the long thin fin

heat transfer equations with a finite heat transfer coefficient in the transverse direction (normal to the plane

of paper) and a large heat transfer coefficient in the lateral direction.

The focus in the studies referred to above has been on developing body conforming grids around bodies

for external fluid flow simulations. The grids thus generated are smooth with at least first two derivatives

continuous, appropriately stretched or clustered normal to any given coordinate direction and orthogonal

over most of the grid domain. The inhomogeneous terms afford a grid control to satisfy clustering and

orthogonality around specific surfaces (in three dimensions) and lines (in two dimensions).
In external flows, these inhomogeneous terms, i.e., the source terms and the dependent variable propor-

tional terms are designed to vanish away from the body so the problem reduces to solving a Laplacian away

from the body.

In the present study, the inhomogeneous terms used are appropriate for an interior grid generation

problem where all the boundaries enveloping the grid will affect the solution through these terms. These

terms are designed by interpreting their meaning physically through the principle of conservation of thermal

energy close to the grid boundaries.

The geometry treated here is that of a planar cross-section of a spiral-bevel pinion gear tooth typical of
the OH-58 helicopter transmission pinion. This study is driven by the need to generate time-series vibration

signatures from the OH-58 helicopter transmission by finite difference simulation of the appropriate structural

dynamic equations. The choice of elliptic pdes for grid generation is entailed by the need to generate

time series data as accurately as possible (see relative comparison with other representative grid generation

methods in Ref. 5).

2 Problem Definition

The two-dimensional governing equations for an elliptic grid generation problem in an appropriately defined

planar domain are 1,2

where _ and 7/are the generalized curvilinear coordinates, x and y are the Cartesian coordinates, and the

P(_, 7/) and Q(_, t}) are the inhomogeneous terms.

The form of the inhomogeneous terms, P and Q, is, e.g., exponential 2 and is given by

P(¢, rl) = -a_(rl)sgn(¢ - ¢Oexp(-bil_. - Cd) (la)

Q(¢, _1) = -ci(¢)sgn(tl - tli)exp(-di Itl -TIiI) (lb)

where i refers to the grid boundary in question.

For the sake of argument, without loss of generality, if we take the case where ¢ > _, and t/> rh , then

we have the inhomogeneous terms as

e(_,v)= -,_,(,7)_zp(-b,(_ - _,)) (Ic)

Q(_, '7) = -c,(_)ezpC-d,(,7 - m) )

At the boundaries, where _ = _, and 7/= T/i, Equations (lc) and (ld) respectively become

P(¢,, 7/) = -ai0})

(ld)



and
Q(_, m) = -c,(_)

When bi_ - _il or dil)7 - _il is small, the inhomogeneous terms take the form given by

P(_,y) = -ai(y)(1 - b,(_-_i))

and

Q(_, )7) -- -ci(_)(1 - di(_ - )h))

Therefore, the governing equation for, e.g., _, in the vicinity of the boundary _i, becomes

_== + _v = -ai(v)(1 - bi(_- _))

or

_,z + _w - ai(tl)bi_ = -ai07) - ai(_7)bi_i (2)

If the term, aibi_, were absent, the resulting equation would turn out to be a Poisson equation. The

equation given above arises, e.g., in the steady state heat conduction problems in long thin fins, where
is the temperature and where the heat transfer coefficient in the transverse thin direction is moderate but

is large in the lateral direction, and there is a balance amongst the heat conducted through the fin, heat
carried away from or to it through convection in proportion to this moderate heat transfer coefficient and

the heat sources/sinks distributed over the domain.
If we define a new variable

0 =_-_,

then Equation(2) becomes

Ù=z + Ov_ - albiO = -ai (3)

The term, -a,, can be thought of as a heat source/sink term.

Equation(3) tells us that when _ > _s, there is a balance between the heat convected from a control

volume in the interior to the boundary _, heat conducted out of this control volume and the heat lost from

the control volume due to the heat sink, ai()/). Conversely, when _ ( _i, there is a balance between the
heat convected from the boundary _ to a control volume in the interior, heat conducted out of the control

volume and the heat generated in the control volume due to the source, ai(T/).

From Equation(3), it can be seen that for a given convective heat flux (given number of grid lines), as
the product, a,bi decreases, the heat transfer coefficient decreases proportionally in magnitude which means

that the temperature gradient at the boundary _i has increased so that _ approaches _, rapidly. This means

that there is a large gradient in _ from the grid boundary i to the interior, thereby resulting in a highly

clustered grid near the boundary.

Similarly, if we consider the case when _, > _, then we have

_+_u_ - a,(_)bi_= -a,(_) - ai(w)bi_i

or)

_. + 0_ - a_(_)b_O = a,(_)

where 0 = _i -

Away from thisgrid boundary, b,I_- _ilor bil_/- v/_Iislarge,and we are leftwith the Laplace equation,

A_ = 0 or At/ = 0. Extremum principleisunconditionallymaintained there,sincethe solutionisharmonic
in thiscase.

Referringto Equation(3),the Green's Theorem givesus

/ /s(-a, + a,b,O)do = /cO,,Ods (4)



where S is the surface area of a closed domain, C is the boundary enclosing this domain, n is the normal to
the surface, dcr is the elemental area and ds is an elemental arc.

The integraads on the left hand side, -ai and alb,O represent the heat source/sink term and the convection

term respectively, and the integrand on the right hand side represents the heat flux through the boundary
C.

Equation(4) is used as a constraint to fix b, uniquely for a solution consistent with the specification of

the boundary data. The extremum principle will be satisfied at the ith boundary, which is the requirement
in the grid generation problems, since the energy conservation principle is satisfied. The term, -ai0?), is

calculated iteratively through the solution process, which together with bi ensures the grid orthogonality and
a given grid spacing at the ith grid boundary.

In the design of these inhomogeneons terms, there is no restriction on the nature of the source term,

ai. It can change sign which indicates the presence of sources and sinks, subject to the constraint given by

Equation(4). Otherwise, improper combinations of sources and sinks will violate the extremum principle. If

over the domain, there is a net rate of heat generation due to the source/sink combination, then there has

to be a positive heat flux convected away and vice-versa. This requirement will automatically be satisfied
by Equation(4).

If there is a point heat source present in the domain, the isothermals (temperature contour lines) will
tend to cluster around it since the gradients in the vicinity of the source will be positive toward the source

and high, depending upon the strength of the source, and conversely for a heat sink. Same argument applies

to a line heat source and sink. By analogy, if the source term turns out to be positive over some parts of
the domain, then the curvilinear coordinate lines will tend towards lines with higher coordinate values and
vice-versa.

3 Solution Procedure

First,the boundary data are selectedappropriate to the physicsof the problem, so that the gradientsin

physicalquantitiescan be resolvedadequately. Since thereisa symmetry plane and a rotationalsymmetry

presentinthe presentproblem, the grid isreflectedabout thissymmetry plane and then rotatedaround com-

pletelyabout a moving axisofperiodicity,thus substantiallyreducing the computational effortingenerating
the gear tooth grid.

Then, by interchangingthe independent and dependent variables,the governing equations to be solved

in the computational space (_,7})become

ax_ - 2Bxav + 7x, m = - j2 (p(_, yl)x_ + Q (_, T1)x.)

ay_e - 2_y¢, + "TY,m = -J_(P(_, _I)Ye + Q(_, T})y,7)

These equations are solved in the computational space using a line SOR relaxation algorithm where each

coordinate line in one curvilinear coordinate direction is solved semi-implicitly using the Thomas algorithm

for tri-diagonai systems. The inhomogeneous terms referred to above are designed and incorporated so that
a desired grid behavior near the boundaries is achieved 6

The inhomogeneous problem is solved using a technique similar to that of Ref. 3 by over-relaxing the
inhomogeneous terms during the iteration process. The inhomogeneous terms used in Ref. 3 are well suited

for external boundary value problems where they allow for clustering in only one curvilinear coordinate

direction, normal to the body. But, in internal boundary value problems, inhomogeneous terms have to take

account of the influence of the boundaries in both curvilinear coordinate directions. The inhomogeneous
terms used here allow for clustering in both coordinate directions.

The inhomogeneous terms, P(_, 7) and Q(_, _}), are evaluated at the boundaries in terms of the left

hand side at each line relaxation sweep. Then outward from each boundary, the inhomogeneons terms are
attenuated through an exponential function in each direction, as discussed above. In _ direction, outward



fromagiven_iboundary,thisexponentialtermisof the form, -aiexp(-bil_ - _il), and, in _ direction, it is

of the form, -aiexp(-b_[y - _il).

The boundary constraint given by Equation (4) is applied to a finite slender strip by evaluating the

heat source/sink term and the convective flux term over the strip close to the boundary with the heat flux

calculated around the strip.

4 Results

Figure 1 shows a finite-difference grid model of pinion and driven gears in mesh. The grids were generated

automatically without any manual prescription of the free parameters.

Figure 1: Finite difference grid model of pinion and driven gears in mesh

Figure 2 below shows a close-up of the pinion gear and shaft.

Figure 2: Close-up view of the pinion gear and shaft



Thespiral-bevelnineteentoothpiniongeartypicalofaOH58helicopterisshowninFig.3andthepinion
shaftisshowninFig.4 below.

Figure3: Finitedifferencegridofthe19-toothspiral-bevelpiniongear

Figure4: Finitedifferencegridof thepinionshaft



In Fig.5below,a cross-sectionof thepiniongearisshown.In Fig.6,thecorrespondingcross-sectional
gridsforanindividualpiniongeartoothandpinionshaftareshown.Thetoothgridshowsadesiredclustering
nearandaroundthetooth.

Asis thecasewith generalizedcurvilinearcoordinates,thecross-sectionalgrid for theshaftdoesnot
containanygeometricsingularities.Thepolarcoordinatesingularityat theoriginhasbeenremovedand
manifestsitselfthroughthefourtriangulargridcellsat theboundaryasisseenin Fig. 6(b)below.

Figure5: Cross-sectionofthepiniongear

r.

(a) (b)

Figure 6: Cross-sectional grids (a) pinion gear tooth (b) pinion shaft



5 Concluding Remarks

The boundary constraints for elliptic grid generation problems developed in this study have been demon-

strated to be applicable to a practical problem of gear teeth grid generation. Smooth clustered grids have

been generated using these constraints without any recourse to redistribution of grid points which has been

a common approach used in elliptic grid generation problems until now. With new constraints, elliptic grids

can be generated in simulation time without any manual intervention thus making problems of structural

dynamics and fluid dynamics over compliant boundaries straightforward.
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